viewof capital = Inputs.range([1000, 50000], {step: 100, label: "Investment Capital ($)", value: 1000})
viewof s0 = Inputs.range([50, 150], {step: 1, label: "Current Price S_0", value: 100})
// Strike equals spot (ATM)
x = s0;
r = 0.04; T = 1; sigma = 0.20; q = 0; // BS parameters
// Formatters
formatUSD = (value, digits = 0) => new Intl.NumberFormat('en-US', {
style: 'currency', currency: 'USD', maximumFractionDigits: digits, minimumFractionDigits: digits
}).format(value)
formatInt = (n) => new Intl.NumberFormat('en-US', {maximumFractionDigits: 0}).format(n)Speculation and Leverage
Stock vs. Call Options
This page demonstrates how leverage can amplify outcomes by comparing two speculation strategies using the same initial capital: buying the stock versus buying call options. We use a simple, consistent setup:
- European call option, no dividends.
- Risk‑free rate: 4% (continuously compounded), volatility: 20%, time to maturity: 1 year.
- Options control 100 shares per contract.
- Option premium is computed by Black–Scholes (see the Payoffs page for details).
Note: Long calls require only the premium upfront.
Set Capital and Spot Price
Side‑by‑Side: What Can You Buy?
Strategy 1: Buy Stock
Strategy 2: Buy Call Options
Profit/Loss vs. S_T
Point‑in‑Time Comparison
Payoffs and P/L Table
Notes
- Stock position P/L: ((S_T − S_0) ).
- Long call P/L: ([max(0, S_T − X) − C_0] ), with (X = S_0) and (C_0) from Black–Scholes.
- For the stock position, the maximum loss is the entire initial outlay if the stock price drops to zero.
- For options, the initial outlay is the premium; risk is limited to that premium for long calls.
See also: the overview of option premium and payoffs on the Payoffs page.